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Interest in the investigation of concentrated energy flux (CEF) interaction with metals 
is governed by the need to study the behavior and properties of metals under high energy den- 
sity conditions at high temperatures and pressures, as well as by the creation of concentrated 
energy sources and their numerous uses in processing technology [I-4]. At this time, during 
consideration of the processes of CEF interaction with metals, a great deal of attention is 
paid to the influence of the periodicity of the action on the efficiency of materials treat- 
ment. Thus, the application of laser radiation modulation in the treatment of holes in [5] 
permitted substantial magnification of their depth. The presence of an optimal relative pulse 
duration regime when using the pulse-periodic generation mode of a CO2--EIL (electron injection 
laser) for laser welding is shown experimentally in [6]. A theoretical study of the reaction 
of metal target evaporation on the modulation of CEF intensity [7-10] showed that the ampli- 
tude-frequency characteristics of the responses of the target surface temperature and recoil 
pressure amplitudes have extrema. However, the investigations in these papers were performed 
without taking account of energy absorption in the substance being evaporated, although energy 
absorption governs the dynamics of the process of CEF interaction with a substance to a great 
extent for a number of cases of practical importance (electron beam absorption in metal vapors 
[3], laser radiation absorption by a plasma being formed at the metal surface). Thus, even 
for a constant magnitude of the energy concentration in the CEF source--evaporated phase-con- 
densed substance system, vibrational processes are observed [11]. 

Resonance properties of the beam--vapor--metal system are studied in this paper under har- 
monic CEF modulation on the basis of the complete system of heat and mass transfer equations 
with energy absorption in the evaporated phase taken into account. 

I. FORMULATION OF THE PROBLEM 

Let us consider the one-dimensional problem. A CEF source with energy density qH is at 
the level x = H (Fig. I). In order for the boundary of the vapor--melt phase transition to 
remain fixed at the level x = 0 (in the case qH = const) during evaporation, the melt is fed 
along the x axis at the velocity U. The value of U is determined by the magnitude of qH, set 
by the gasdynamic regime in the vapor and by the material characteristics. 

The system of equations describing the processes of vapor escape and energy absorption in 
the domain 0 ~< x ~< H has the form 

ap a ~ ( 9 u )  + ~ -  (p + pu ~) - 0, a-T + ~ (pu) = 0, a 

u 2 Oq 
0 --P q- T~]--~- =0,]j (1.1) 

R ~=g(o,r)q, p=Tpr. 
Here p,  p, T, and u a r e  the  p r e s s u r e ,  d e n s i t y ,  t e m p e r a t u r e ,  and v e l o c i t y  of  the  e v a p o r a t e d  
s u b s t a n c e ,  R i s  the  u n i v e r s a l  gas  c o n s t a n t ,  ~ i s  the  mola r  mass ,  and y i s  t he  a d i a b a t i c  i ndex .  
The t e rm 3q/3x  d e s c r i b e s  the  e n e r g y  a b s o r p t i o n  w i t h  a b s o r p t i o n  c o e f f i c i e n t  K(p,  T) .  S p e c i f i -  
c a t i o n  o f  t h e  a b s o r p t i o n  c o e f f i c i e n t  a f f o r d s  an o p p o r t u n i t y  to  d e s c r i b e  the  p r o c e s s e s  in  b o t h  
the  v a p o r s  ( e l e c t r o n  beam a b s o r p t i o n )  and the  f u l l y  i o n i z e d  p lasma ( l a s e r  r a d i a t i o n  a b s o r p -  
t i o n )  on the  b a s i s  o f  t h e  s y s t e m  of  e q u a t i o n s  unde r  c o n s i d e r a t i o n .  

The heat-conduction equation for the melt is written as 

OFrn/Ot -t" Uv~Fm/OX = a .eO2Fm/OX~, ( t .2) 
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where am is the coefficient of thermal diffusivity, and T m is the temperature of the melt. 

Equations (1.1) and (1.2) are supplemented by the following boundary conditions 

PmWm = pu; ( 1 . 3 )  

Pm= P + P~; (I .4) 
0rm q=pu(Lev +~)+X m o ~ ,  ( 1 . 5 )  

~n = T; (I. 6) 

( P m = B e x p  - -  R--'~m]' ( 1 . 7 )  

q(g)  = q~; ( I .  8) 

1/" u(H)= ~ r(H); (1.9) 

rm(--~,, 0 = r~. (1.10) 

H e r e  B = c o n s t ,  Lev  and X m a r e  t h e  s p e c i f i c  h e a t  o f  e v a p o r a t i o n  and t h e  h e a t  c o n d u c t i o n  c o e f -  
f i c i e n t  o f  t h e  c o n d e n s e d  p h a s e ,  Pm, Pm, and u m a r e  t h e  p r e s s u r e ,  d e n s i t y ,  and v e i o c i t y  o f  
t h i s  p h a s e .  C o n d i t i o n s  ( 1 . 3 ) - ( 1 . 7 )  a r e  w r i t t e n  on t h e  b o u n d a r y  of  t h e  p h a s e  t r a n s i t i o n ,  which  
does  n o t  a g r e e  w i t h  t h e  l e v e l  x = 0 f o r  a t i m e - v a r y i n g  q u a n t i t y  qH. The f i r s t  t h r e e  a r e  c o n -  
t i n u i t y  c o n d i t i o n s  f o r  t h e  m a s s ,  momentum, and e n e r g y  f l u x e s ,  w h i l e  t h e  r e l a t i o n s h i p s  (1..6) 
and ( 1 . 7 ) ,  t h e  C i a p e y r o m - C l a u s i u s  e q u a t i o n ,  d e s c r i b e  t h e  e q u i l i b r i u m  e v a p o r a t i o n .  I n  t h e  
g e n e r a l  c a s e  t h e  J o u g u e t  c o n d i t i o n  ( 1 . 9 )  i s ,  s t r i c t l y  s p e a k i n g ,  n o t  s a t i s f i e d .  I t s  v a I i d i t y  
f o r  t he  s t a t i o n a r y  r e g i m e  i s  shown in  [ 1 2 ] .  Fo r  t h e  c a s e  o f  s m a l l  d e v i a t i o n s  f r o m  t h e  s t a -  
t i o n a r y  r e g i m e ,  t o  be  examined  i n  See .  3, u t i l i z a t i o n  o f  t h e  J o u g u e t  c o n d i t i o n  i s  an a d d i -  
t i o n a l  h y p o t h e s i s  u s e d  f o r  t h e  a p p r o x i m a t e  a n a l y s i s  o f  t h e  p r o c e s s  o f  r e s o n a n c e  a c t i o n .  

A s y s t e m  of  e q u a t i o n s  s i m i l a r  t o  ( 1 . 1 )  was c o n s i d e r e d  in  [ 1 3 ] .  I n  c o n t r a s t  t o  [ 1 3 ] ,  i n  
t h i s  p a p e r  t h e  e n e r g y  s o u r c e  i s  assumed to  be  a t  a f i n i t e  d i s t a n c e  f r o m  t h e  t a r g e t .  The c o n -  
d i t i o n  K = 0 f o r  x > H, i n t r o d u c e d  in  [12] f o r  a l o n g  and n a r r o w  c h a n n e l ,  c o r r e s p o n d s  p h y s i -  
c a i l y  to  r a p i d  e x p a n s i o n  o f  t h e  v a p o r s  d u r i n g  e m e r g e n c e  f r o m  a c h a n n e l  o f  d e p t h  H, whereupon  
t h e i r  d e n s i t y  d r o p s  and t h e y  become t r a n s p a r e n t  t o  t h e  beam.  L a t e r  h y d r o d y n a m i c  p r o c e s s e s  
for weakly ionized vapors are considered (K = a0, ~ = const). 

2. THE STATIONARY REGIME 

For a time-independent energy flux, the system (I .I) allows the stationary solution first 
obtained in [12]. After it has been made dimensionless, it can be written as 

pu = / = conS.L p + p u  ~ = q~ = c o n s t ,  

pu (~_.~t pp + -~)  - -  Oq = c o n s t , ,  ( 2 . 1 )  

dq/dx-= Ipq, p = pT, 

where Q = [q]/([p][u]3); ~ = a[p][x]. The quantities [q] = qH, [T] = Tb, where T b is the 
material boiling point at atmospheric pressure, [p] = I0 s Pa, [p] = p[p]/(R[T]), [m] = (R[T]/ 
p)i/2, and [x] = H. The dimensionless boundary conditions have the following form after a 
number of manipulations: 

r = exp {L [i - -  t/T(O) ] }, 
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Qq(O) = I{L -Jr C[T(0) -- T~I + u~(0)/2}, 

q0) = t, u ( l ) =  Vvr(i) ,  
(2.2) 

where L = BLev/(R[T]), C= pcm/R , T~ = T~/[T], and c m is the specific heat of the melt. For 
simplicity, the energy expended in melting the solid phase is not taken into account and 
the specific heats of the solid and liquid metals are considered equal. 

After manipulation, the system (2.1) can be reduced to one differential equation in q: 

7E t I ~ t I u(0) 2 ~ - ] - / - [ q - - q ( 0 ) ] .  ( 2 . 3 )  

The plus sign corresponds to supersonic gas flow, and the minus sign to subsonic flow. In our 
case (for evaporation into a vacuum), the gas velocity is less than the speed of sound [12] 
in the domain 0 ~ x < H. Taking account of (2.1), we obtain a transcendental equation from 
the first two equations of (2.2) that connects T(0) with q(0) and u(O): 

Qq(O) = exp { L [ l -  i / T ( O ) ] } { L  + C[T(0) - -  T-~] + ~(o)/2}/[T(O)/u(O) + K0)]. ( 2 . 4 )  

Now, in  o r d e r  to  s o l v e  ( 2 . 3 ) ,  we p r o c e e d  as f o l l o w s .  We g i v e  a r b i t r a r y  v a l u e s  o f  q(0)  and 
u (0)  t a k e n  w i t h i n  r e a s o n a b l e  l i m i t s .  From ( 2 . 4 )  we d e t e r m i n e  T ( 0 ) ,  and f and ~ f rom the  
f i r s t  two e q u a t i o n s  of  ( 2 . 2 ) .  Knowing the  c o e f f i c i e n t s  of  ( 2 . 3 )  and t h e  v a l u e  o f  q ( 0 ) ,  t h i s  
equation can be integrated numerically, and then the values of all the gasdynamic quantities 
can be found for x = I. The confirmation that the two last conditions in (2.2) is satisfied 
permits estimating the correctness of the selection of q(0) and u(0). 

The stationary distribution of parameters of the evaporated substance along x is shown 
in Fig. 2. The computation is executed for Q = 50 (for many metals, the values qH ~ I09-I0i~ 
W/m 2 correspond to a change in Q within the limits I0-I00), L = 10, I = 0.5, C = 5, T--~ = 0.1. 

3. PERIODIC ACTION 

Let us consider the influence of a small periodic perturbation imposed on the constant 
energy flux on the gasdynamic characteristics of the vapor. We set 

] = ]o + ] i ,  q~ = q~o + q h , r  = r + ~ i ,  p = po § Pl ,  P = Po + Pl, 

T =  T o + T i ,  u =  U o + U ~ , q = q o §  

---- 0 -~- ~i, Trn = Tmo -~ Tmi. 

(3.1) 

2 �9 

?--~------P A-7! ~ is the coordinate of the phase transition boundary Here f = 9u; q9 = p-~ 9~2; %b----y_i p 

(it equals 0 for stationary evaporation). The necessity to introduce new functions f, 9, and 
, will be shown below. The quantities with subscript 0 correspond to the stationary process, 
the quantities with subscript I to small periodic perturbations having the form 

f ~  = F ,  (z) exp (io~t), ~i ---- ~, exp (i~ot), ( 3 . 2 )  

where F denotes each of the functions f, q~, ~, p, p, T, u, q, and T m. 

Taking account of (3. I), we substitute (3.2) in the preliminary dimensionless equation 
(I.1). After linearization and a number of calculations, we obtain a system of ordinary dif- 
ferential equations in the amplitudes of the perturbations for the gasdynamic quantities 

d f , / d x  = - -  i ~ 9 , ,  d g , / d x  = - -  i$2],,~ 

d • , / d x  = - -  iQ ( * * / u  o - -  P*/]o) + *'o (q*/qo - -  u , / uo ) ,  ( 3 . 3 )  

d ~ , / d x  = 1 (Poq* + qo9*), 

where ~ = ~H/[u] and [t] = e -i, If] = [9][u], [~] = [p], [~] ~ [u] 2 are taken as the scales of the 
quantities. The prime here and henceforth denotes differentiation with respect to x. There 
is a single-valued correspondence between /,, ~,,~, and p,, ~,, u, which fails to hold only at 
the point x = 1. Thus 

] , =  u09, + p0u,, ~ ,  = p ,  + u02p, + 2[ou,, 
? {P*__Po ~ ( 3 . 4 )  

�9 * = v---T Po p P*] + 
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Expressing p,, ~,, u, from (3.4), we obtain 

P* " - -  (7 + i) u J ,  + ?q~, - -  (7 - -  1) Po~* 

TT o - -  u~ 

u ,  - -  (ToP~ - -  7f~ @ (Y - -  t) u~ ( 3 . 5 )  
2 

7T o - -  u o 

[ -  2~Uo~o/po ~ + (v + ~) ~ ]  I ,  + [-~r o + (~,"  ~) ~ ]  y ,  - (~, - ~) &Uo~,, 
P @ ~  2 . '  

7To - -  u o 

If the system of equations (3.3) is written for the derivatives of p,, p,, and u,, then the 
point x = I will be slngular (at this point yT0 = ui). The point x = I is not singular for 
the form selected for the system. The passage to the quantities f, g0 , andS@ is indeed ex- 
plained by this. 

After making the heat conduction equation (I .2) dimensionless and substituting T m from 
(3.1) with (3.2) taken into account, an equation is obtained for the amplitude of the con- 
densed phase temperature perturbation 

d2rm arm n 
. . . .  i ~ T  m = 0 .  (3.6) 

Here k = [u]H/a m and ~ = [P]/Pm, and the quantity Gm/U is taken as the length scale. The 
solution of (3.6), 

should satisfy two boundary conditions: the condition of constancy of the temperature as x + 
-~o, and the condition of equality of the melt and vapor temperatures on the evaporation bound- 
ary. The former yields C2 = 0, while the latter permits C 1 to be expressed in terms of the 
perturbation amplitude of the other quantities 

cl = r ,  (o) + L k~io 

There are still five other conditions for the perturbation amplitudes: 

the condition of substance flux continuity for x = 

~ o ~ , ;  (3.7) t ,  (o) = - ~ k ~  . 

the condition of energy flux continuity at x = 

Qq* (0) - -  [ L + ug (0) /2]  1 ,  (0) - -  fouo (0) u , ( 0 )  - -  C]obiC.~ + 

{[Qqg (0) - -  ]oUo (0) u o (0 ) ] / (kp ]o )  - -  C/o [To (0) - -  T ~ ] }  ~ ,  = 0;  ( 3 . 8 )  

the Clapeyron-Clausius equation 

r'o (o) ._ 1 
, . ( o )  + 

the condition for the energy flux qH perturbation amplitude 

q ,  ( l )  = i ;  (3.10) 
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TABLE 1 

Q l 

50 0,5 
50 0,t 
t0 0,5 

h. i O - 5  

i, 4 

f~fr �9 103 

t,8 
0,85 
0,25 

%s ~ z 

i90 
460 

27 

q0(H)~0 -~ 
m' 

3,5 
3,5 
0,7 

H, m m  

6,5 
1,3. 
6,5 

the Jouguet condition 

[~ u, (I) p. (I)]. 
p ,  (~) = po it) [ -  % (f) + o - -~ ]  (3 .  ~ 

The solution of the system (3.3) behaves as follows. At the point x = I u,(1) and p,(1) 
are given arbitrarily in addition to q,(1) from (3.10). The term p,(1) was determined from 
the condition (3.11), and f,(1),~(1), and 4,(I) from the relationship (3.4). Such a sequence 
of calculations permits leaving the point x = I with the finite derivatives (3.3), which is 
impossible in the direct assignment of ],(I), 9,(i), and ~,(t). Determining the perturbation 
amplitudes at the point x = 0 by numerical integration of the system (3.3), the correctness 
of assigning u,(1) and p,(1) can be confirmed by satisfaction of the conditions (3.7)-(3.9). 

Results of solving the system (3.3) are shown in Figs. 3 and 4 for the following values 
of the dimensionless numbers Q = 50, L = 10, I = 0.5, C = 5, T--~ = 0.I, p = 2.5"10 -5, k = 2- 

1 1 

105 . The amplitudes of the quantities ~(~)- 90, q(~)- %(0), m--m0= ~ pdx--~p0dx are repre- 

sented in Fig. 3 and the phase shift @ of these quantities relative to the phase of the quan- 
tity qi(I) in Fig. 4. The amplitude values are calculated to the accuracy of a constant that 
is governed by the selection of the ratio q,(1)/q0(1). The singularity of the results ob- 
tained is the presence of a resonance regime for the pressure on the melt surface Pm(~) =~($) 
upon energy absorption in the substance being evaporated. Let us note that according to [3, 
14] the recoil pressure plays the governing role in the mechanism of "dagger" melting of the 
material. Results of computations for different values of Q, l, and k are presented in Table 
I. If a specific metal and coefficient ~ are given in the energy absorption law ~q/~x = ~pq, 
then it is possible to go from the dimensionless to dimensional parameters. The dimensional 
quantities in Table ] are computed for iron and a 25-keV electron beam energy (here the coef- 
ficient ~ is inversely proportional to the square of the electron energy [3], equal to 384 m2/ 
kg). 

i 

An analysis of Figs. 3 and 4 shows that a minimal phase shift in the modulus of [ pdx 

relative to the phase q(1) corresponds to its maximal value at the resonance frequency. Such 
agreement permits representation of the physical resonance mechanism in the system under con- 
sideration as the creation of a self-consistent regime for which a maximum mass of evaporated 

H 

substance Ipdx governing the energy absorption is found in the domain ~ < x < H at the time 

of maximal energy delivery to the system. Energy absorption results in a growth of the vapor 
escape velocity and of the pressure in the vapor, which in the long run also produces a maxi- 
mum condition for the recoil pressure on the melt surface. 

2. 

3. 

4. 
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INVESTIGATION OF SLIDING SPARKS BY THE SCHLIEREN METHOD 

E. A. Zobov, A. N. Sidorov, 
and I. G. Litvinova 

UDC 537.521 

Sliding sparks (SS) are used for photoionization of active media of TEA COe lasers, ex- 
cimer lasers [I], and initiation of chemical lasers [2]. In long active laser media or at 
high pressures, SS are a very convenient method of preionization. 

At the same time, one of the requirements which the source of preionization must meet 
is that the perturbation of the active medium must be minimum, especially in repetitive pulse 

�9 lasers with high pulse repetition frequency. The optimal quality of the active medium is 
also very important when the lasing pulse duration in optical pumping of the SS is long [3]. 

The purpose of this work is to study the optical perturbations of the medium when SS are 
employed for preionization or optical pumping of the active medium in lasers. 

The experiments were performed on a schlieren setup (Fig. I). The objective lenses 3 and 
4 were 30 cm in diameter and had a focal length f = 106 cm. A nonuniformity a--b was placed 
between the objectives. The high-quality objectives 6 and 7 with a very uniform light field, 
just as the remaining optical elements, were carefully aligned; otherwise it is impossible 
to obtain images of weak perturbations of the medium. The optimal diameter of the diaphragm 
was 5-2.5 mm. The EV-45 pulsed light source 2 (radiation duration of 250 ~sec, Planck radia- 
tor at T = 4"I04~ transilluminated the nonuniformity under study. The schlieren motion 
pictures were made with the help of a fast SFR-2M camera 8. The power supply for the SS Was 
a capacitor bank with a capacitance C = I-3 ~F, which was discharged through a commutated 
discharger I on the first winding of an IKT pulsed cable transformer with a transformer ratio 
of 1:10. 

The SS were formed on the flat surface of a film dielectric 9, 0.8 mm thick (Fig. Ib), 
covering a metallic sheet 10 (initiator). The dischargegap ~--bhad asquare-shaped protuberance 
and the transverse section of the spark channel was recorded on an 8-cm-long flat sec- 
tion of this, proturberance. The discharge developed in a stable manner along the controlling 
strip 11; the method for controlling the development of the SS is described in detail in [4]. 
For monitoring the reproducibility of the conditions of discharge the voltage and current in 
the discharge gap were displayed on an oscillograph by a divider D and a Rogowski loop RL. 
The voltage oscillogram, corresponding to the photographic frames in Fig. 2b-d, is shown in 
Fig. Ic. The arrow marks the moment of breakdown. 
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